

AI-ON-Lab

Al for precision oncology, from research to patient care

3 November 2025

Federica Corso

Bioengineer, Post-Doc Researcher

Head of Lab

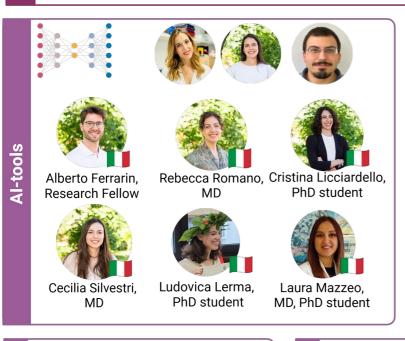
Arsela Prelaj, MD, PhD

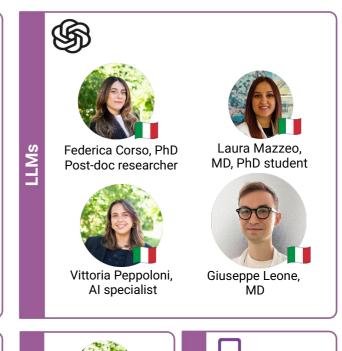
Vanja Mišković, PhD

Prof. Francesco Trovò

AI-ON-Lab

Restelli

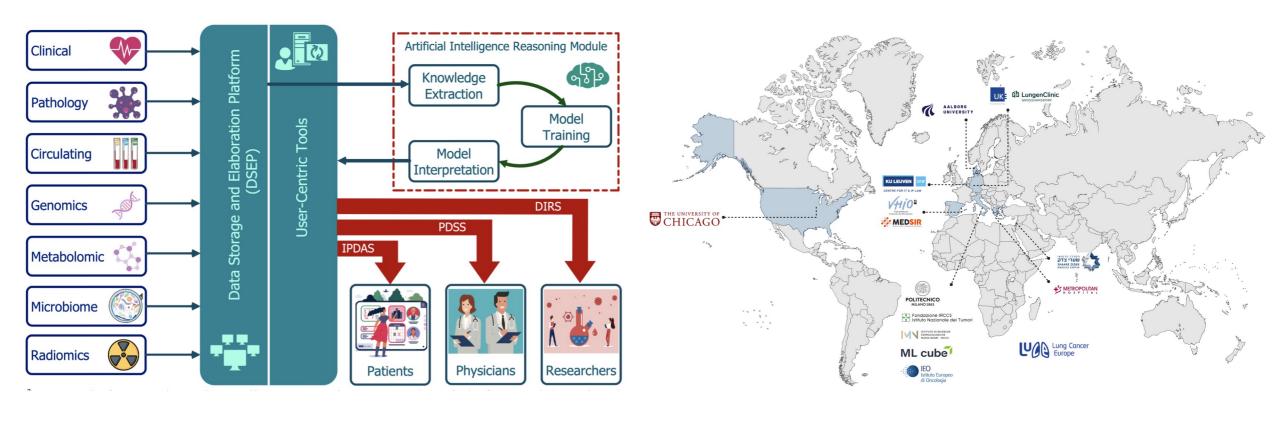

Prof. Alessandra Pedrocchi


Prof. Emilia Ambrosini

Prof. Giacomo Boracchi

MD

Arianna Rigamonti, PhD student

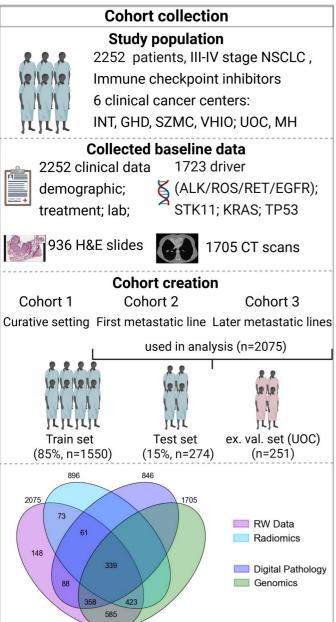

Research Fellow

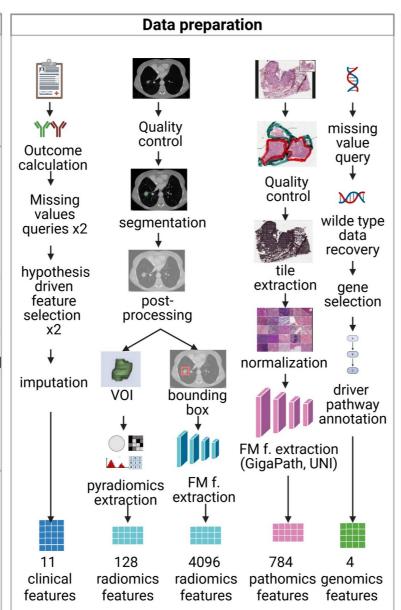
Our Main Projects: 13LUNG and APOLLO11

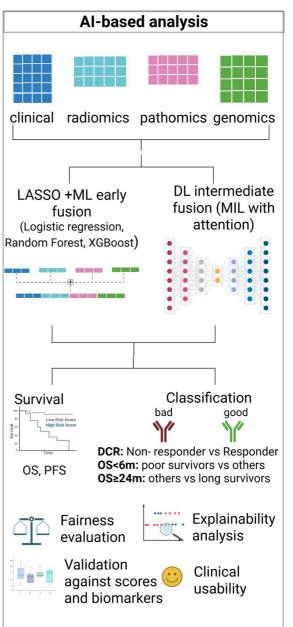
Project 1: I3LUNG

A European and beyond project on AI, IO and NSCLC

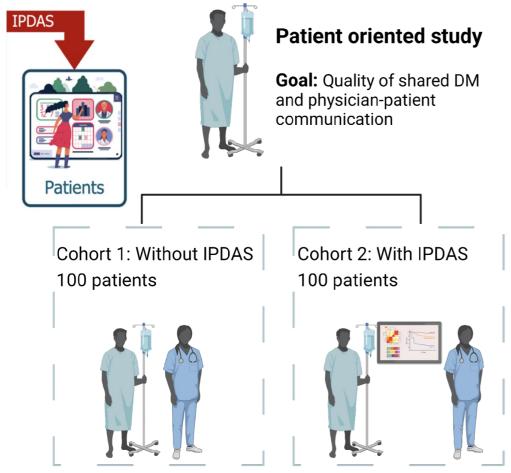
10.000.000 € Grant




Goal: Develop a Data storage and Elaboration Platform (DESP) by integrating Real world and multiomics data in NSCLC patients treated with immunotherapy with the aim to produce a clinical decision-making tool using Al approaches

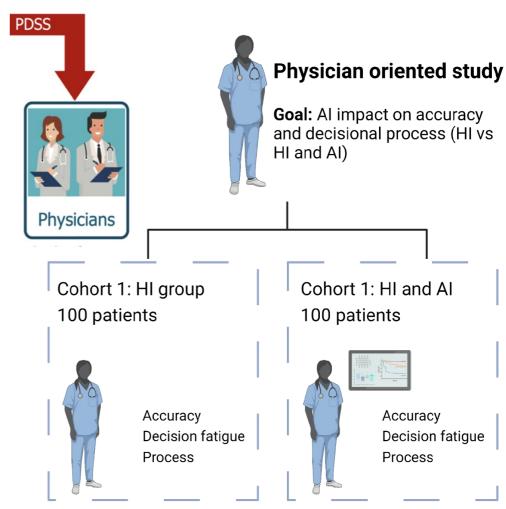

https://i3lung.eu/

13LUNG: PDSS R-tool



Presented at WCLC 2025, oral presentation, Under

13LUNG: psychological and usability



Outcome:

Impact of IPDAS on shared medical DM

Outcome:

Confirmation weather the combination of HI and AI perform better respect to HI alone (target +15%)

APOLLO 11

48 Centri di ricerca avanzata sul tumore al polmone

Creazione di una rete di centri italiani che si occupano di pazienti affetti da tumore del polmone NSCLC avanzati già trattati o candidati a ricevere una terapia a base di ICI

Real world data da tutti i centri attivi

Sviluppo di un database nazionale Real World per i pazienti affetti da tumore del polmone trattati con TERAPIE INNOVATIVE (ad es. immunoterapia, terapie target, anticorpi coniugati)

https://apollo11.netw
ork/

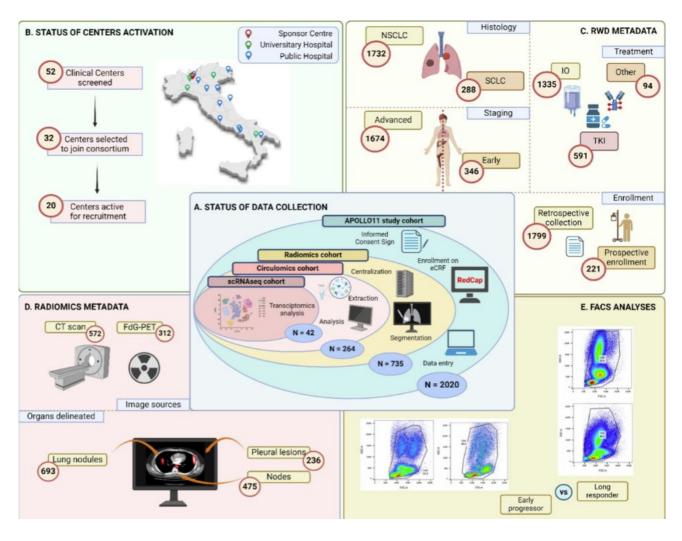
Biobanche

Sviluppo di una biobanca multilivello nazionale registrata con impostazione e armonizzazione delle procedure operative per la raccolta, la conservazione e la spedizione dei campioni biologici.

Intelligenza Artificiale

Creazione di un modello predittivo di intelligenza artificiale (AI) per migliorare la previsione della risposta, portando in ultima analisi a una migliore sopravvivenza e qualità di vita dei pazienti oncologici

Project 2: APOLLO11



Sistema Socio Sanitario

Regione

Lombardia

Data driven vs hypothesis driven research

Clinican design & Database collection Under revision

Project 2: APOLLO11

Cost-Effective Machine Learning for Predicting Survival in NSCLC Patients on Immunotherapy: Insights From the APOLLO11 Study

Vanja Miskovic¹, L. Mazzeo¹, C. Silvestri¹, A. Ferrarin², C. M. Licciardello², C. T.a Saracino³, E. Mingo³, M. Fiorenti³, R. Romano¹, A. Servetto⁴, C. Della Corte⁵, M. S. Cona⁶, N. La Verde⁶, C. Bareggi⁷, M. Brighenti⁸, F. Biello⁹, A. Tartarone¹⁰, I. Antonuzzo¹¹, L. Provenzano¹, A. Spagnoleti¹, B. Guirges², M. Ganzinelli¹, M. Meazza Prina¹, P. Ambrosini¹, A. Vingiani¹, T. Beninato¹, R. Serino¹, C. Cavalli¹, E. Zito¹, R. di Mauro¹, A. D. Dumitrascu¹, G. Corrao¹, G. Li Esposito³, N. Salmistraro¹⁴, S. Siena¹⁴, AI-ON-Lab E. G. Pizzutilo¹⁴, D. Signorelli¹², F. Trovò², F.M. De Braud¹, A. L. G. Pedrocchi², G. Lo Russo¹, A. Prelaj

IASLC

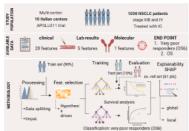
1 Medical Oncology Department 1, Fondazione IRCCS INT, Milan; 2 Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milan; 3 Università Campus Bio-Medico di Roma; 4 Universita deali Studi di Napoli Federico II: 5 Precision Medicine Department. Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy: 6 ASST Fatebenefratelli Sacco: 7 Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy, 8 Medical Oncology Unit, ASST Ospedale di Cremona, Italy, 9 Medical Oncology Unit, Azienda Ospedaliero Universitaria Maggiore della Carità, Novara, Italy, 10 N. 3049 Oncology Unit, IRCCS CROB, Rionero in Vulture, Italy; 11 Azienda ospedaliero-universitaria Careggi, Firenze, Italy; 12 Biological Science Division, University of Chicago Medical Center, Chicago, Illinois, US; 13 Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy; 14 Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy

IASLC 2025 World Conference on Lung Cancer SEPTEMBER 6-9, 2025 BARCELONA, SPAIN

Real world data

from 10 centers!

INTRODUCTION


- Identifying NSCLC patients with very poor outcomes (OS < 6 months) after immunotherapy (IO) is a key clinical
- . These patients might benefit more from clinical trials or supportive care rather than standard IO
- . Machine Learning (ML) models using routine clinical and laboratory data show promise in predicting outcomes and supporting decision-making.1,2
- . Main question: Can ML models, trained on real-world and cost-effective data, reliably identify very poor responders to immunotherapy?

METHODS

Patients data collected through APOLLO11 project.

1130 NSCLC patients from 10 Italian centers.

Study overview: classification analysis using routine clinical and

RESULTS

Key patients characteristics: Diverse real-world dataset reflecting clinical heterogeneity!

Cox-ML model 0.67

test and subset test set with PDL1 and EPSILON

The same model reach AUC 0.8 on ex. valiadtion.

0.72

0.64

Cost search - logistic regression CV: The key objective: minimize false negatives everyone who would benefit from ICI will receive it. Model selection - the closest to the utopian point.

								High
Model	Test set	N. pts	AUC	Sensitivity	Specificity	ECOG_BASELINE		1
PDL1	PDL1 subset	80	0.65	0.51	0.78	log_NLR	· · · · · · · · · · · · · · · · · · ·	1
EPSILON	EPSIOLON subset	28	0.37	0.41	0.33	log_LYMPHOCYTES_BASELINE		anteo
Logistic regression	Full test	95	0.72	0.76	0.69	log_SMOKING_PACKSYEAR BMI_EASELINE	5-00-5-0	
	PDL1 subset	80	0.76	0.91	0.61		4 North	Feature
	EPSILON	28	0.73	0.95	0.50		1 - Auffahlehmer 1	
	subset					SITE_METS_IO_START_BONE	1 1	
Results on the independent test set: ML models were						LINE_NUM		1
					nodels were		-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 SHAP value (impact on model output)	Low
trained on train set. Testing was done on: independent						Clobal CUAD the ever	roll importance of each feature in the LD	mode

Global SHAP - the overall importance of each feature in the LR model color - feature value

Main takeaways:

- . Cost tuning can help in optimizing predictions of logistic
- Selected model achieved AUC 0.72 on a test set and 0.80 on ex. validation set - good generalizability.
- · Key variables for very poor prognosis:
 - · High ECOG Performance status

 - low lymphocytes

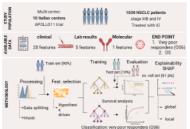
CONCLUSION

- Clinical and laboratory data have strong value for predicting very poor outcomes in NSCLC patients treated with IO.
- Our results are consistent with recent findings (SCORPIO1 and LORIS2).
- · This approach is scalable, cost-efficient, and applicable in real-world settings, as it relies only on routinely collected data.
- · Explainable AI confirmed known prognostic factors (e.g., ECOG PS, NLR) as key model
- Early identification of very poor responders may help quide patients toward alternative strategies such as clinical trials or supportive care, improving personalization of treatment.

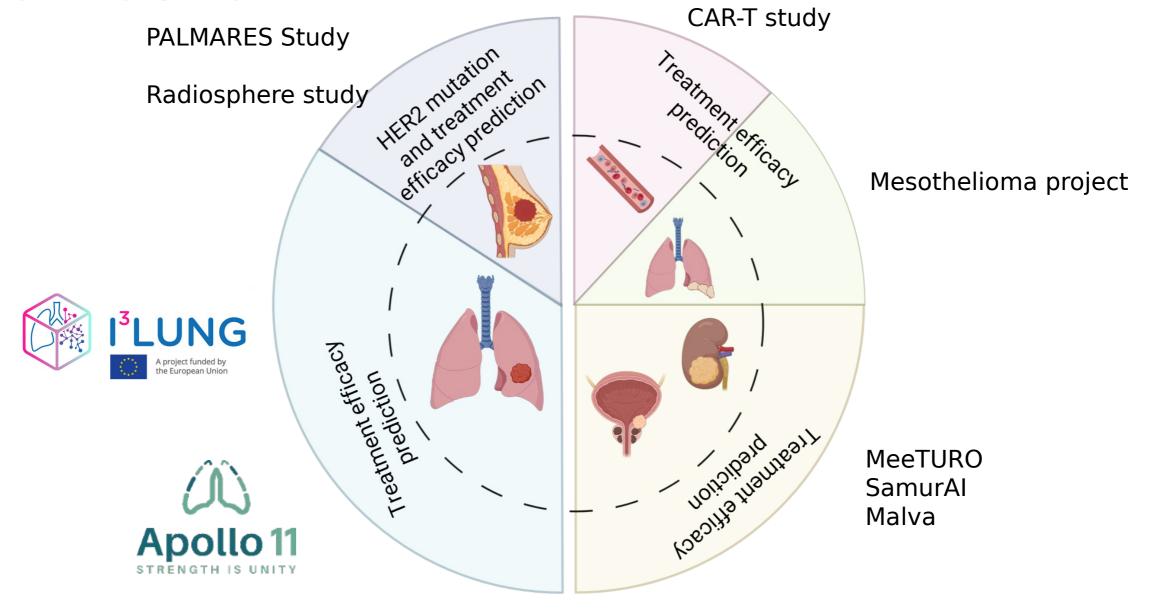
Take-home message

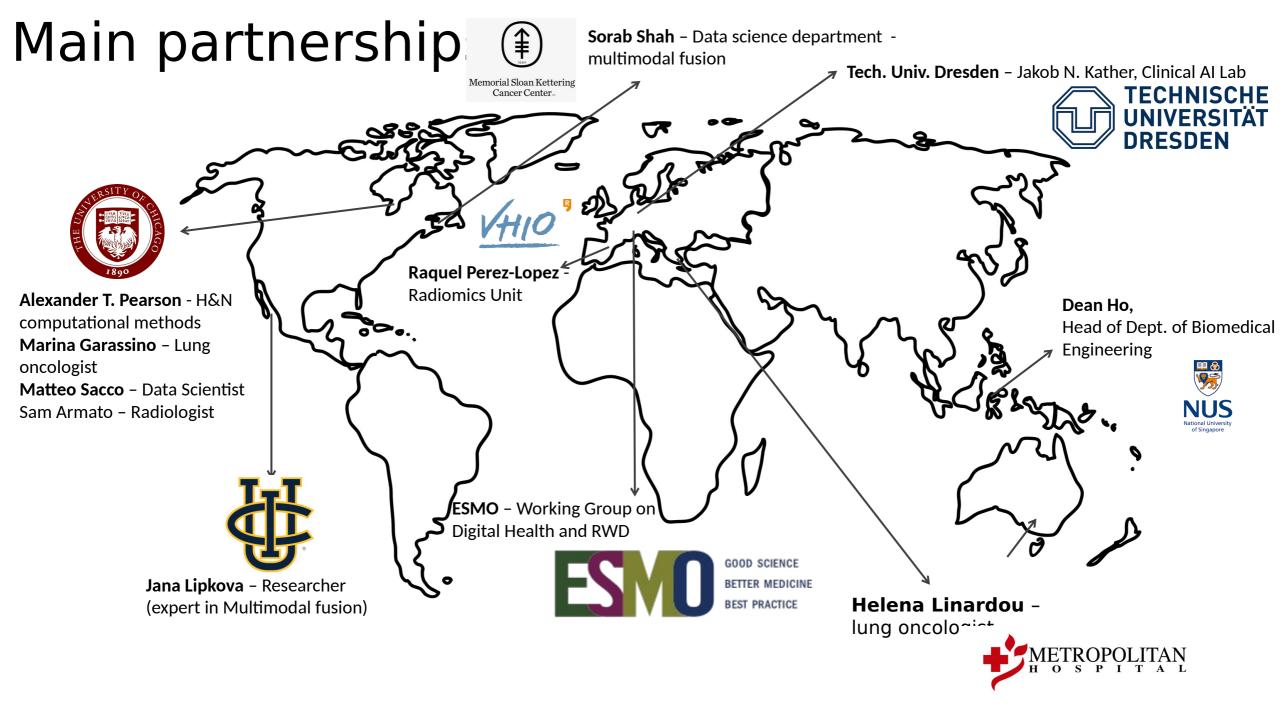
Simple ML models using routine clinical and lab data can identify NSCLC patients with very poor outcomes to immunotherapy.

This could enable earlier, more personalized treatment strategies.



lab data with a goal to identify very poor outcome (OS < 6 months) and Survival analysis (OS)





1 Yoo. SK., Nat. Med. 2025 2 Chang, TG, Nat Cancer 2024

Results on the survival analysis - COX-ML

Ongoing projects and Italian Collaborations

Opportunities

Theses in Artificial Intelligence

Al-tools 25

Olha Sidelnikova: Application of TabPFN for Predictive Modeling Using Real-World Data in Lung Cancer Patients

Valentina Bitetto: Implementation and Evaluation of an Intermediate Multimodal Fusion ng Cancer Patient Data

Eric Lambardo: Optimization and Evaluation of Foundation Models for Feature Extraction from PDL-Radiomics

Giorgia Aprile: Application of nnUNet for Automatic Segmentation of Thoracic Cancer Lesions in LLMs nts

Valentina Bruzzi: LLM-On-Hub: A User-Friendly Platform for Cancer Medication Extraction and Model Comparison with Large Language Models

Francesca Chite: LLM-On-Hub: A User-Friendly Platform for Cancer Timeline Extraction and Treatment Response Inference with Large Language Models

Explainability approaches for AI-based immunotherapy predictive models for

Radiomics

A.A. 25-26

Co-supervisors

Margherita Faval

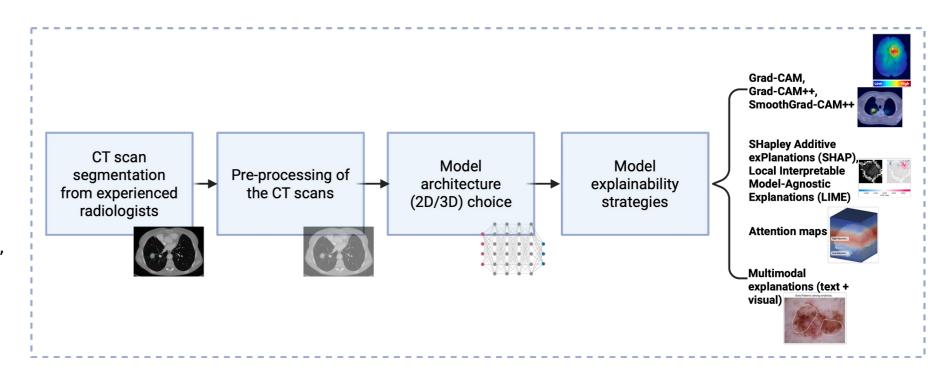
Vanja Miskovic

Dr. Arsela Prela

NSCI Cucina CT scans

Aim: Al-based models has shown promising results in deriving novel data-driven biomarkers from medical imaging, offering a promising approach to enhance treatment stratification. One primary barrier of integration into clinical practice is the lack of interpretability of these models, which undermines clinician trust. **The aim of this thesis is to evaluate existing methods for explaining Al-based models to enhance the interpretability of models within the context of radiological images (CT scans).**

Models already implemented:


- 2D ResNet50 pre-trained on public radiological images
- 3D ResNet50 pre-trained on medical images

Project phases:

- Literature review on current explainability methodologies for radiological images
- Implementation of explainability approaches (e.g., saliency maps, Grad-CAM, LIME, SHAP) on Al models

Requirements:

- Good knowledge of Python
- Good knowledge of Machine and/or Deep Learning

Explainability approaches for Large Language Models in Electronic Health

LLMs

Co-supervisors Federica Corso Dr. Laura Mazzeo Dr. Arsela Prela

A.A. 25-26

Healthcare

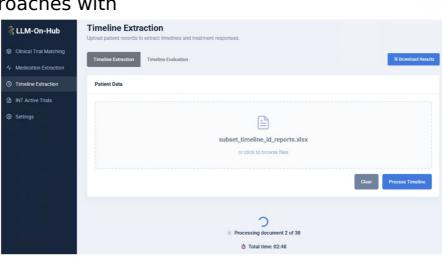
Pacards of cancer nationts

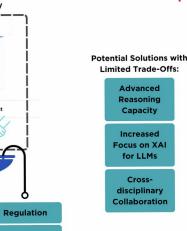
Aim: Large language models (LLMs) have achieved impressive progress in healthcare, they can answer patients' queries predict patient trajectories using electronic health records, and write incredibly coherent medical documents. LLMs, like other AI models, must satisfy explainability constraints for stakeholders like clinicians and patients. The aim of this thesis is to evaluate existing methods for explaining LLMs to enhance the interpretability of models within the context of electronic health records of cancer patients.

Models already implemented:

Open-source LLMs already available in our webplatform

Project phases:


Literature review on current explainability methodologies for LLMs


Implementation of explainability approaches with existing libraries

Usability studies for evaluation

Requirements:

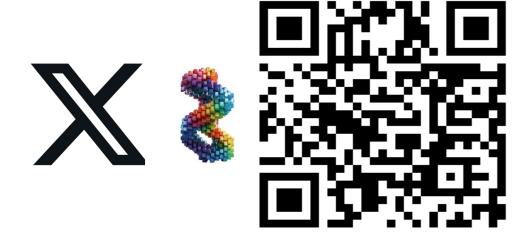
- Good knowledge of Python
- Good knowledge of Machine and/or Deep Learning

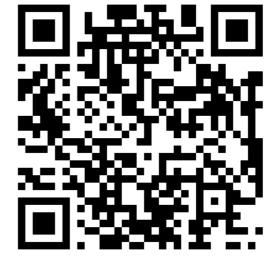
Mesinovic, M., Watkinson, P. & Zhu, T. Explainability in the age of large language models for healthcare. Commun Eng 4, 128 (2025).

Opportunities beyond thesis

- Opportunity of payed intership after graduation (6 months minimum potentially renewable).
- Work preferebly in presence, remote work is allowed only in accordance with the group leader.

Let's keep in touch!


federica.corso@istitutotumori. mi.it


vanja.miskovic@polimi .it

arsela.prelaj@istitutotumori. mi.it

European
Interdisciplinary
Society of Artificial
Intelligence in
Cancer research.
Founded in 19th Dec 2024

Arsela Prelaj President

Daniel Truhn

Jakob Nikolas Kather
President-elect

Mireia Crispin General Secretary

Helena Linardou Treasurer

Claes Lundström

Raquel Pérez-López

Loic Verlingue

Julien Calderaro

Vanja Mišković

Mihaela Aldea

WEBSITE: https://esac-network.eu.

contact@esac-network.eu

CONTACT US by e-mail:

Be a catalyst for collaboration

Truly effective AI integration hinges on the combined expertise of a variety of research figures: medical oncologists, imaging specialists (nuclear) radiologists, pathologists, physicists, bioinformaticians and AI engineers.

SPEAK THE SAME LANGUAGE

Build a multidisciplinary network

ESAC aims to bridge strategic alliances with key European initiatives and scientific organizations to amplify Al's impact in research, diagnostic and oncology.

DELIVER ALCARE across Cancer Societies

Comprehensive educational programs

Recognizing the need for specific expertise, ESAC provides training opportunities, from webinars and interdisciplinary conferences.

SUMMER SCHOOL IN CANCER RESEARCH MASTER: ALIN CANCER RESEARCH

European
Interdisciplinary
Society of Artificial
Intelligence in
Cancer research.
Founded in 19th Dec 2024

1st ANNUAL MEETING

MAY 7-8, 2026

@ POLITECNICO DI MILANO (TRIFOGLIO)

REGISTRATIONS OPENING SOON

Announcing ESAC's first Annual Meeting

Oct 28, 2025 | Events

We are proud to confirm the dates of the Society's first Annual Meeting, co-organized by the Fondazione IRCCS Istituto Nazionale dei Tumori di Milano (www.istitutotumori.mi.it) which will take place on May 7th and 8th in Milan, in the beautiful...

Save the Date: 2nd Al for Cancer Research Summer School

by Admin | Oct 28, 2025 | Events | 0 comments

3-8 September 2026 | Corfu, Greece

Following the success of its inaugural edition, the **AI for Cancer Research Summer School** returns in Corfu in 2026. This second edition will once again bring together a diverse community of researchers, clinicians, data scientists, and industry professionals to explore the rapidly evolving applications of artificial intelligence in cancer research and care. The week-long event will combine lectures, practical workshops, case discussions, and mentoring sessions, offering participants a comprehensive view of both the theoretical foundations and real-world challenges of AI in oncology.

WEBSITE: https://esac-network.eu. CONTACT US by e-mail: contact@esac-network.eu.

Thanks for your attention!